Solvability and uniqueness criteria for generalized Sylvester-type equations
نویسندگان
چکیده
منابع مشابه
Solvability and uniqueness criteria for generalized Sylvester-type equations∗
We provide necessary and sufficient conditions for the generalized ?Sylvester matrix equation, AXB +CX ? D = E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A,B,C,D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the e...
متن کاملar X iv : 1 60 8 . 01 18 3 v 2 [ m at h . R A ] 1 5 N ov 2 01 6 Solvability and uniqueness criteria for generalized Sylvester - type equations ∗
We provide necessary and sufficient conditions for the generalized ⋆Sylvester matrix equation, AXB+CX ⋆ D = E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A,B,C,D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the ex...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملParallel Algorithms and Condition Estimators for Standard and Generalized Triangular Sylvester-Type Matrix Equations
We discuss parallel algorithms for solving eight common standard and generalized triangular Sylvester-type matrix equation. Our parallel algorithms are based on explicit blocking, 2D block-cyclic data distribution of the matrices and wavefront-like traversal of the right hand side matrices while solving small-sized matrix equations at different nodes and updating the rest of the right hand side...
متن کاملTheoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2018
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.07.010